Metaheuristic Procedures for Training Neural Networks

CHF 191.20
Auf Lager
SKU
8QVF18O6IE2
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mo., 20.10.2025 und Di., 21.10.2025

Details

Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.


Apart from research efforts bringing together metaheuristic techniques to train artificial neural networks, this is the first book to achieve this objective. This book provides a unified approach to training ANNs with modern heuristics; moreover, it provides abundant literature demonstrating how these procedures escape local optima and solve problems in very different mathematical scenarios The procedures and methods in the book are strategies that have demonstrated success in finding solutions of high quality to hard problems in industry, business, and science within reasonable computational time Includes supplementary material: sn.pub/extras

Inhalt
Classical Training Methods.- Local Search Based Methods.- Simulated Annealing.- Tabu Search.- Variable Neighbourhood Search.- Population Based Methods.- Estimation of Distribution Algorithms.- Genetic Algorithms.- Scatter Search.- Other Advanced Methods.- Ant Colony Optimization.- Cooperative Coevolutionary Methods.- Greedy Randomized Adaptive Search Procedures.- Memetic Algorithms.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781441941282
    • Auflage Softcover reprint of hardcover 1st edition 2006
    • Editor Rafael Martí, Enrique Alba
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T15mm
    • Jahr 2010
    • EAN 9781441941282
    • Format Kartonierter Einband
    • ISBN 1441941282
    • Veröffentlichung 19.11.2010
    • Titel Metaheuristic Procedures for Training Neural Networks
    • Untertitel Operations Research Computer Science Interfaces Series 35, Operations Research/C
    • Gewicht 406g
    • Herausgeber Springer US
    • Anzahl Seiten 264

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.