Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Minimum Error Entropy Classification
Details
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals.
Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multilayer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEElike concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
Presents data classification methodologies based on a minimum error entropy approach Includes both theoretical results and applications to real world datasets Written by leading experts in the field
Inhalt
Introduction.- Continuous Risk Functionals.- MEE with Continuous Errors.- MEE with Discrete Errors.- EE-Inspired Risks.- Applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642437427
- Auflage 2013
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T16mm
- Jahr 2014
- EAN 9783642437427
- Format Kartonierter Einband
- ISBN 3642437427
- Veröffentlichung 09.08.2014
- Titel Minimum Error Entropy Classification
- Autor Joaquim P. Marques de Sá , Luís A. Alexandre , Jorge M. F. Santos , Luís M. A. Silva
- Untertitel Studies in Computational Intelligence 420
- Gewicht 429g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 280