Modeling Over-dispersed Binary Outcome Data

CHF 41.45
Auf Lager
SKU
M9JCN56TNU0
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Many a time data admit more variability than expected under the assumed distribution. The greater variability than predicted by the generalized linear model random component reflects overdispersion. Overdispersion occurs because the mean and variance components of a GLM are related and depends on the same parameter that is being predicted through the independent vector. In the context of logistic regression, overdispersion occurs when the discrepancies between the observed responses and their predicted values are larger than what the binomial model would predict. The problem of overdispersion may also be confounded with the problem of omitted covariates. If overdispersion is present in a data set, the estimated standard errors and test statistics the overall goodness-of-fit will be distorted and adjustments must be made and the interpretation of the model will be incorrect and any predictions will be too imprecise. In this book, we applied Quasilikelihood techniques (Scaling), William's procedure, Generalized Estimating Equation (GEE) to real-life datasets and proved it overcome the problem of overdispersion. We employed the free statistical software R version 3.1.

Autorentext

Babaniyi .Y. Olaniyi was born in Lagos, Nigeria. He received the B.Sc. degree with First Class Honors from the Department of Statistics and Mathematical Sciences from Kwara State University, Nigeria, in 2016. He graduated as the best student and he is currently interested in Machine Learning, Deep learning and Artificial Intelligence.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783330067622
    • Genre Maths
    • Anzahl Seiten 80
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T5mm
    • Jahr 2017
    • EAN 9783330067622
    • Format Kartonierter Einband
    • ISBN 3330067624
    • Veröffentlichung 05.04.2017
    • Titel Modeling Over-dispersed Binary Outcome Data
    • Autor Babaniyi Olaniyi
    • Gewicht 137g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470