Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Modell für die kurzfristige Aktienkursprognose mit Hilfe der Kapitalmarktsynergetik
Details
In dieser Arbeit wird ein kausales Modell für die kurzfristige Aktienkursprognose vorgestellt. Dieses Prognosemodell basiert auf dem von Landes/Loistl entwickelten synergetischen Ansatz zur Modellierung der Kapitalmarktmikrostruktur, kurz Kapitalmarktsynergetik genannt. Die Kapitalmarktsynergetik steht in Form einer Computersimulation zur Verfügung. Der Aufbau dieser Arbeit gliedert sich in einen Theorie- und einen Praxisteil. Der Theorieteil beschreibt den Aufbau des Modells. Der Praxisteil umfasst die softwaretechnische Umsetzung. Das Modell selbst unterteilt sich ablauftechnisch in zwei Phasen: in die Lern- und die Prognosephase. In der Lernphase wird mit Hilfe eines Genetischen Algorithmus die simulierte Kursentwicklung an die tatsächlich beobachtete Kurszeitreihe (Vergleichszeitreihe) angepasst. Das Ergebnis dient einem Neuronalen Netzwerk zum Training. Das Resultat der Lernphase ist ein trainiertes Neuronales Netzwerk. Dieses trainierte Neuronale Netz wird dann in der Prognosephase für die Transformation von beobachteten Marktdaten, wie Börsenkurse, KGVs etc. zu Startparametern der Kapitalmarktsynergetik verwendet. Die Simulation liefert den prognostizierten Kursverlauf über einen gewünschten Zeitraum, der mit dem tatsächlichen Kursverlauf verglichen wird. Die softwaretechnische Umsetzung des Prognosemodell erwies sich, aufgrund der benötigten hohen Computerleistung, als schwierig. Trotzdem zeigte der Vergleich zwischen den prognostizierten und den tatsächlichen Kursen eine bemerkenswerte Ähnlichkeit.
Autorentext
Paul Oitzl, Magister der Sozial- undWirtschaftswissenschaften, Handelswissenschaft an der Wirtschaftsuniversität Wien. Abschluss 2003 als Mag. rer. soc. oec. Derzeit tätig als Risk Daten-Qualitätsmanager im Finanzsektor.
Klappentext
In dieser Arbeit wird ein kausales Modell für die kurzfristige Aktienkursprognose vorgestellt. Dieses Prognosemodell basiert auf dem von Landes/Loistl entwickelten synergetischen Ansatz zur Modellierung der Kapitalmarktmikrostruktur, kurz Kapitalmarktsynergetik genannt. Die Kapitalmarktsynergetik steht in Form einer Computersimulation zur Verfügung. Der Aufbau dieser Arbeit gliedert sich in einen Theorie- und einen Praxisteil. Der Theorieteil beschreibt den Aufbau des Modells. Der Praxisteil umfasst die softwaretechnische Umsetzung. Das Modell selbst unterteilt sich ablauftechnisch in zwei Phasen: in die Lern- und die Prognosephase. In der Lernphase wird mit Hilfe eines Genetischen Algorithmus die simulierte Kursentwicklung an die tatsächlich beobachtete Kurszeitreihe (Vergleichszeitreihe) angepasst. Das Ergebnis dient einem Neuronalen Netzwerk zum Training. Das Resultat der Lernphase ist ein trainiertes Neuronales Netzwerk. Dieses trainierte Neuronale Netz wird dann in der Prognosephase für die Transformation von beobachteten Marktdaten, wie Börsenkurse, KGVs etc. zu Startparametern der Kapitalmarktsynergetik verwendet. Die Simulation liefert den prognostizierten Kursverlauf über einen gewünschten Zeitraum, der mit dem tatsächlichen Kursverlauf verglichen wird. Die softwaretechnische Umsetzung des Prognosemodell erwies sich, aufgrund der benötigten hohen Computerleistung, als schwierig. Trotzdem zeigte der Vergleich zwischen den prognostizierten und den tatsächlichen Kursen eine bemerkenswerte Ähnlichkeit.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783836657211
- Sprache Deutsch
- Titel Modell für die kurzfristige Aktienkursprognose mit Hilfe der Kapitalmarktsynergetik
- Veröffentlichung 10.03.2008
- ISBN 978-3-8366-5721-1
- Format Kartonierter Einband
- EAN 9783836657211
- Jahr 2008
- Größe H270mm x B190mm x T9mm
- Autor Paul Oitzl
- Untertitel Mag.-Arb.
- Genre Management
- Anzahl Seiten 134
- Herausgeber Diplomica Verlag
- Gewicht 338g