Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Models of Computation for Big Data
Details
The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory.
Models of Computation for Big Data, covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should be familiar with the fundamentals of algorithm design and analysis, discrete mathematics, probability and have general mathematical maturity.
Focuses on the fundamental principles of algorithm design for big data processing Covers advanced models of computation relevant for developing memory-efficient algorithms Advanced-level students and researchers focusing on computer and data science will find this book valuable as a text or reference book
Inhalt
Preface.- Streaming Models.- Introduction.- Indyk's Algorithm.- Point Query.- Sketching.- Sub-Linear Time Models.- Introduction.- Dimentionality Reduction.- Johnson Lindenstrauss Lower Bound.- Fast Johnson Lindenstrauss Transform.- Sublinear Time Algorithmic Models.- Linear Algebraic Models.- Introduction.- Subspace Embeddings.- Low-Rank Approximation.- The Matrix Completion Problem.- Other Computational Models.- References
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319918501
- Sprache Englisch
- Auflage 1st edition 2018
- Größe H235mm x B155mm x T7mm
- Jahr 2018
- EAN 9783319918501
- Format Kartonierter Einband
- ISBN 3319918508
- Veröffentlichung 17.12.2018
- Titel Models of Computation for Big Data
- Autor Rajendra Akerkar
- Untertitel Engl/dän, Advanced Information and Knowledge Processing - SpringerBriefs in Adva
- Gewicht 184g
- Herausgeber Springer International Publishing
- Anzahl Seiten 112
- Lesemotiv Verstehen
- Genre Informatik