Mordell Weil Theorem

CHF 43.20
Auf Lager
SKU
OKR87C745MM
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, the Mordell Weil theorem states that for an abelian variety A over a number field K, the group A(K) of K-rational points of A is a finitely-generated abelian group, called the Mordell-Weil group. The case with A an elliptic curve E and K the rational number field Q is Mordell''s theorem, answering a question apparently posed by Poincaré around 1908; it was proved by Louis Mordell in 1922. The tangent-chord process (one form of addition theorem on a cubic curve) had been known as far back as the seventeenth century. The process of infinite descent of Fermat was well known, but Mordell succeeded in establishing the finiteness of the quotient group E(Q)/2E(Q) which forms a major step in the proof. Certainly the finiteness of this group is a necessary condition for E(Q) to be finitely-generated; and it shows that the rank is finite. This turns out to be the essential difficulty. It can be proved by direct analysis of the doubling of a point on E.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131313073
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131313073
    • Format Fachbuch
    • Titel Mordell Weil Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470