Motion Data Mining and Activity Recognition

CHF 98.00
Auf Lager
SKU
4BEJ5O0Q8L6
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Techniques for understanding video object motion activity are becoming increasingly important with the widespread adoption of CCTV surveillance systems. Motion trajectories provide rich spatiotemporal information about an object s activity. This book presents a novel technique for clustering and classification of object trajectory-based video motion clips using basis function approximation. In the proposed motion learning system, trajectories are treated as time series and modelled using orthogonal basis function representation. A novel framework (Iterative HSACT-SOM) is proposed that exploits the chosen feature subspace and performs efficient and effective motion learning in the presence of significant number of anomalies in training data. A novel modelling technique, referred to as m-Mediods, is proposed that models the class containing n members with m Mediods. Once the m- Mediods based model for all the classes have been learnt, the classification of new trajectories and anomaly detection can be performed by checking the closeness of said trajectory to the models of known classes using an agglomerative approach.

Autorentext

Dr. Shehzad Khalid graduated from GIKI, Pakistan, in 2000. He received the MSc degree from NUST, Pakistan in 2003 and Ph.D.from University of Manchester, U.K., in 2009. He is currently an Asstt. professor at Bahria University, Pakistan. His research interests includes: indexing and retrieval, computer vision, machine learning.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639210453
    • Genre Technik
    • Sprache Englisch
    • Anzahl Seiten 216
    • Herausgeber VDM Verlag
    • Größe H220mm x B150mm x T13mm
    • Jahr 2009
    • EAN 9783639210453
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-21045-3
    • Titel Motion Data Mining and Activity Recognition
    • Autor Shehzad Khalid
    • Untertitel Motion Classification using Spatio-temporal Approximation of Object Trajectories
    • Gewicht 338g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470