Multi-Agent Visual-SLAM Algorithms on Autonomous Robots

CHF 61.80
Auf Lager
SKU
196DMRPOSRS
Stock 1 Verfügbar
Geliefert zwischen Fr., 26.09.2025 und Mo., 29.09.2025

Details

The Simultaneous Localization and Mapping (SLAM) problem is one of the most challenging problems in robot navigation. The problem addresses autonomously exploring and mapping an unknown environment without prior knowledge (of features). The robot should generate the map of the environment and estimate its pose with respect to the map. An extension of this problem to the distributed multi-robot platform is a popular research topic for its challenges and commitments. Multiple cooperative robots exploring an area would decrease exploration time and increase the accuracy. This work introduces the application of two successful SLAM solution techniques to the multi-robot domain using visual sensors and non-unique landmarks. There are two contributions to the literature: Evolutionary Strategies (ES) is used to calibrate the parameters of the Extended Kalman Filter-SLAM (EKF-SLAM) method with supervised data, and a novel map merging method with uncertainty propagation is introduced for the Fast-SLAM algorithm. The developed algorithms are tested in both simulated and real robot experiments and the improvements and applicability of the developed methods are shown with the results.

Autorentext

Nezih Ergin Özkucur is a PhD Candidate in Computer Science atBöaziçi University's Artificial Intelligence Lab. His researchinterests are intelligent robots, Bayesian state estimation andmapping.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 197g
    • Untertitel Multi-Robot Mapping
    • Autor Nezih Ergin Özkucur
    • Titel Multi-Agent Visual-SLAM Algorithms on Autonomous Robots
    • Veröffentlichung 29.06.2010
    • ISBN 3838382269
    • Format Kartonierter Einband
    • EAN 9783838382265
    • Jahr 2010
    • Größe H220mm x B150mm x T8mm
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 120
    • GTIN 09783838382265

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.