Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases
Details
Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdisciplinary fields only a few of them are well equipped to handle these multi-criteria issues of DM. Therefore, the DM issues have attracted considerable attention of the well established multiobjective genetic algorithm community to optimize the objectives in the tasks of DM.
The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases.
Assembles high quality original contributions that reflect and advance the state-of-the art in the area of Multi-objective Evolutionary Algorithms for Data Mining and Knowledge Discovery Emphasizes on the utility of evolutionary algorithms to various facets of Knowledge Discovery in Databases that involve multiple objectives
Inhalt
Genetic Algorithm for Optimization of Multiple Objectives in Knowledge Discovery from Large Databases.- Knowledge Incorporation in Multi-objective Evolutionary Algorithms.- Evolutionary Multi-objective Rule Selection for Classification Rule Mining.- Rule Extraction from Compact Pareto-optimal Neural Networks.- On the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection.- Classification and Survival Analysis Using Multi-objective Evolutionary Algorithms.- Clustering Based on Genetic Algorithms.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642096150
- Auflage Softcover reprint of hardcover 1st edition 2008
- Editor Ashish Ghosh, Susmita Ghosh, Satchidananda Dehuri
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T10mm
- Jahr 2010
- EAN 9783642096150
- Format Kartonierter Einband
- ISBN 3642096158
- Veröffentlichung 19.11.2010
- Titel Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases
- Untertitel Studies in Computational Intelligence 98
- Gewicht 277g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 176