Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Multi-objectivization in Evolutionary Algorithms
Details
Multi-objectivization is the process of reformulating a single-objective problem into a multi-objective problem and solving it with a multi-objective method in order to provide a solution to the original single-objective problem. This work investigates Evolutionary Algorithms (EAs) in both a general categorical sense and as they are applied to multi-objectivization. A diversity classification framework for EAs is proposed. Furthermore, multi-objectivization techniques are examined. Through study of an abstract problem, job-shop scheduling problems, and the Traveling Salesman Problem, principles governing the design decisions for multi-objectivization are identified. Two ways in which multi-objectivization creates beneficial search results are theorized. Prevalent multi-objectivization techniques are compared both analytically and through these experiments. A third, more general version of the studied techniques is proposed with results showing robust performance across a variety of computational budgets.
Autorentext
Darrell Lochtefeld graduated with a Ph.D. in Engineering (Industrial and Human Systems) from Wright State University, Dayton Ohio in June, 2011. His professional interests include modeling and simulation, optimization, machine learning, and software design.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783845428543
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H220mm x B150mm x T16mm
- Jahr 2011
- EAN 9783845428543
- Format Kartonierter Einband
- ISBN 3845428546
- Veröffentlichung 04.08.2011
- Titel Multi-objectivization in Evolutionary Algorithms
- Autor Darrell Lochtefeld
- Gewicht 399g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 256