Multiple Fuzzy Classification Systems

CHF 168.75
Auf Lager
SKU
GB0QSE2C3GO
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book presents a novel approach for exploratory data analysis with ensembles of various neuro-fuzzy systems. It places emphasis on ensembles that can work on incomplete data, thanks to rough set theory.

Fuzzy classiers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scientic and business applications. Fuzzy classiers use fuzzy rules and do not require assumptions common to statistical classication. Rough set theory is useful when data sets are incomplete. It denes a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classication. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a nite set of learning models, usually weak learners.

The present book discusses the three aforementioned elds fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed on the possibility to combine fuzzy rules from fuzzy systems being members of classication ensemble. Furthermore, an emphasis is placed on ensembles that can work on incomplete data, thanks to rough set theory. .

Novel approach for exploratory data analysis with ensembles of various neuro-fuzzy systems Derivation of various ensemble architectures that are able to work with missing data Written by an expert in this field

Inhalt
Introduction to fuzzy systems.- Ensemble techniques.- Relational modular fuzzy systems.- Ensembles of the Mamdani fuzzy systems.- Logical type fuzzy systems.- Takagi-Sugeno fuzzy systems.- Roughneurofuzzy Ensembles for Classification with Missing Data.- Concluding remarks and challenges for future research.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642306037
    • Auflage 2012
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T13mm
    • Jahr 2012
    • EAN 9783642306037
    • Format Fester Einband
    • ISBN 3642306039
    • Veröffentlichung 28.06.2012
    • Titel Multiple Fuzzy Classification Systems
    • Autor Rafa Scherer
    • Untertitel Studies in Fuzziness and Soft Computing 288
    • Gewicht 389g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 144

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470