Multiple Imputation of Missing Data in Practice
Details
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
Autorentext
Yulei He and Guangyu Zhang are mathematical statisticians at the National Center for Health Statistics, the U.S. Centers for Disease Control and Prevention. Chiu-Heish Hsu is a Professor of Biostatistics at the University of Arizona. All authors have researched, taught, and consulted in multiple imputation and missing data analysis in the past 20 years.
Zusammenfassung
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
Inhalt
1. Introduction. 2. Statistical Background. 3. Multiple Imputation Analysis: Basics. 4. Multiple Imputation for Univariate Missing Data: Parametric Methods. 5. Multiple Imputation for Univariate Missing Data: Robust Methods. 6. Multiple Imputation for Multivariate Missing Data: the Joint Modeling Approach. 7. Multiple Imputation for Multivariate Missing Data: the Fully Conditional Specification Approach. 8. Multiple Imputation in Survival Data Analysis. 9. Multiple Imputation for Longitudinal Data. 10. Multiple Imputation Analysis for Complex Survey Data. 11. Multiple Imputation for Data Subject to Measurement Error. 12. Multiple Imputation Diagnostics.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781498722063
- Genre Maths
- Anzahl Seiten 476
- Herausgeber Chapman and Hall/CRC
- Größe H234mm x B156mm
- Jahr 2021
- EAN 9781498722063
- Format Fester Einband
- ISBN 978-1-4987-2206-3
- Veröffentlichung 26.11.2021
- Titel Multiple Imputation of Missing Data in Practice
- Autor Yulei He , Guangyu Zhang , Chiu-Hsieh Hsu
- Untertitel Basic Theory and Analysis Strategies
- Gewicht 843g
- Sprache Englisch