Multiple Instance Learning

CHF 138.35
Auf Lager
SKU
MPCJJB8ALDC
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included.
This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined.
Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously.
This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools.



Offers a comprehensive overview of multiple instance learning widely used to classify and label texts, pictures, videos and music in the Internet Provides the user with the most relevant algorithms for MIL and the most representative applications Covers both the background and future directions of the field Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- Multiple Instance Learning.- Multi-Instance Classification.- Instance-Based Classification Methods.- Bag-Based Classification Methods.- Multi-Instance Regression.- Unsupervised Multiple Instance Learning.- Data Reduction.- Imbalance Multi-Instance Data.- Multiple Instance Multiple Label Learning.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319838151
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2016
    • Größe H235mm x B155mm x T14mm
    • Jahr 2018
    • EAN 9783319838151
    • Format Kartonierter Einband
    • ISBN 3319838156
    • Veröffentlichung 29.06.2018
    • Titel Multiple Instance Learning
    • Autor Francisco Herrera , Sebastián Ventura , Rafael Bello , Sarah Vluymans , Amelia Zafra , Dánel Sánchez-Tarragó , Chris Cornelis
    • Untertitel Foundations and Algorithms
    • Gewicht 382g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 248
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.