Nature-Inspired Computation in Data Mining and Machine Learning

CHF 150.95
Auf Lager
SKU
AV7VA2AC81E
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.

Provides a timely review and summary of the latest developments in nature-inspired computation and its application in data mining and machine learning Discusses key directions in topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, support vector machine, supervised learning, neural networks, logistic regression, feature selection and extraction, image processing and pattern recognition Reviews both theoretical studies and applications, highlighting how nature-inspired computation combines with traditional techniques in data mining and machine learning to produce enhanced performance Includes case studies from various applications and industries

Inhalt
Adaptive Improved Flower Pollination Algorithm for Global Optimization.- Algorithms for Optimization and Machine Learning over Cloud.- Implementation of Machine Learning and Data Mining to Improve Cybersecurity and Limit Vulnerabilities to Cyber Attacks.- Comparative analysis of different classiers on crisis-related tweets: An elaborate study.- An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm.- Prospects of Machine and Deep Learning in Analysis of Vital Signs for the Improvement of Healthcare Services.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030285555
    • Auflage 1st edition 2020
    • Editor Xing-Shi He, Xin-She Yang
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T16mm
    • Jahr 2020
    • EAN 9783030285555
    • Format Kartonierter Einband
    • ISBN 3030285553
    • Veröffentlichung 16.09.2020
    • Titel Nature-Inspired Computation in Data Mining and Machine Learning
    • Untertitel Studies in Computational Intelligence 855
    • Gewicht 441g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 288

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470