Neural Control of Renewable Electrical Power Systems

CHF 137.60
Auf Lager
SKU
CPRRGEOMF60
Stock 1 Verfügbar
Geliefert zwischen Fr., 14.11.2025 und Mo., 17.11.2025

Details

This book presents advanced control techniques that use neural networks to deal with grid disturbances in the context renewable energy sources, and to enhance low-voltage ride-through capacity, which is a vital in terms of ensuring that the integration of distributed energy resources into the electrical power network. It presents modern control algorithms based on neural identification for different renewable energy sources, such as wind power, which uses doubly-fed induction generators, solar power, and battery banks for storage. It then discusses the use of the proposed controllers to track doubly-fed induction generator dynamics references: DC voltage, grid power factor, and stator active and reactive power, and the use of simulations to validate their performance. Further, it addresses methods of testing low-voltage ride-through capacity enhancement in the presence of grid disturbances, as well as the experimental validation of the controllers under both normal and abnormalgrid conditions. The book then describes how the proposed control schemes are extended to control a grid-connected microgrid, and the use of an IEEE 9-bus system to evaluate their performance and response in the presence of grid disturbances. Lastly, it examines the real-time simulation of the entire system under normal and abnormal conditions using an Opal-RT simulator.



Presents recent research on neural control of renewable electrical power systems Describes robust control schemes based on neural network identification Intended for researchers and students with a control background wishing to expand their knowledge of wind power generation and distributed energy resources installed into a grid-connected microgrid

Zusammenfassung
"The book addresses graduate students and researchers in advanced control engineering, applied mathematics, mathematical systems theory and wind power technologies." (Vladimir Sobolev, zbMATH 1482.93003, 2022)

Inhalt
Introduction.- Mathematical Preliminaries.- Wind System Modeling.- Neural Control Synthesis.- Experimental Results.- Microgrid Control.- Conclusions and Future Work.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030474423
    • Genre Elektrotechnik
    • Auflage 1st edition 2020
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 232
    • Größe H241mm x B160mm x T19mm
    • Jahr 2020
    • EAN 9783030474423
    • Format Fester Einband
    • ISBN 3030474429
    • Veröffentlichung 10.05.2020
    • Titel Neural Control of Renewable Electrical Power Systems
    • Autor Larbi Djilali , Edgar N. Sánchez
    • Untertitel Studies in Systems, Decision and Control 278
    • Gewicht 518g
    • Herausgeber Springer International Publishing

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470