Neural Networks for Variational Problems in Engineering

CHF 97.50
Auf Lager
SKU
C0A8MLGMDT9
Stock 1 Verfügbar
Geliefert zwischen Di., 18.11.2025 und Mi., 19.11.2025

Details

Many problems arising in science and engineering aim to find a function which is the optimal value of a specified functional. Some examples include optimal control, inverse analysis and optimal shape design. Only some of these, regarded as variational problems, can be solved analytically, and the only general technique is to approximate the solution using direct methods. Unfortunately, variational problems are very difficult to solve, and it becomes necessary to innovate in the field of numerical methods in order to overcome the difficulties. The objective of this PhD Thesis is to develop a conceptual theory of neural networks from the perspective of functional analysis and variational calculus. Within this formulation, learning means to solve a variational problem by minimizing an objective functional associated to the neural network. The choice of the objective functional depends on the particular application. On the other side, its evaluation might need the integration of functions, ordinary differential equations or partial differential equations. As it will be shown, neural networks are able to deal with a wide range of applications in mathematics and physics.

Autorentext

M.Tech in Computer Sc. & Engg. Specialized Area: Artificial Neural Network and Mobile communication. Currently employed in Kalyani Government Engineering College as Asst. Professor.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659166860
    • Genre Technik
    • Auflage Aufl.
    • Sprache Englisch
    • Anzahl Seiten 228
    • Herausgeber LAP Lambert Academic Publishing
    • Größe H220mm x B220mm
    • Jahr 2012
    • EAN 9783659166860
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-659-16686-0
    • Titel Neural Networks for Variational Problems in Engineering
    • Autor Sourav Banerjee , Aritra Ghosh
    • Untertitel A variational formulation for the multilayer perceptron

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470