NEW ALGORITHMS FOR MULTI-STEP AHEAD FORECASTING

CHF 74.05
Auf Lager
SKU
5K20FNS7GFJ
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

History tells that every human being desire to foresee, comprehend and ultimately explore the future. Multi-step ahead forecasting is a challenging research area due to propagation of forecasting errors with the increase of forecasting steps. Two interesting architectures based on nearest neighbor method are proposed. Importance of selection criteria in nearest neighbor search plays an important role in multi-step ahead forecasting. Effect of up-sampling of time series and change of effective embedding dimension on the forecasting errors is studied in detail. Effect of five interpolation schemes for up-sampling and comparison of three distance metrics for nearest neighbor search on forecasting performance is also included. A hybrid selection criterion of nearest neighbor with avoidance of biasing is found to be very effective in multi-step ahead forecasting. In the end, predictability analysis of proposed algorithms on ten benchmark time series highlight the effectiveness of the forecasting algorithms in the scenarios of series collected from different kinds of dynamic systems. This book is based on the PhD work of Mr. Rahat Abbas.

Autorentext

Dr Muhammad Arif has done his PhD from Tohoku University, Japan in 1999. Currently, He is Professor in the Department of Computer Science, Air University, Pakistan. His research interests are Computational Intelligence, Pattern Recognition, Biometrics and Time Series Forecasting. Syed Rahat Abbas has done his PhD in 2008 from PIEAS, Pakistan.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639249811
    • Genre Technik
    • Sprache Englisch
    • Anzahl Seiten 160
    • Herausgeber VDM Verlag
    • Größe H220mm x B150mm x T10mm
    • Jahr 2010
    • EAN 9783639249811
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-24981-1
    • Titel NEW ALGORITHMS FOR MULTI-STEP AHEAD FORECASTING
    • Autor Muhammad Arif , Syed Rahat
    • Untertitel Using Computational Intelligence Paradigm
    • Gewicht 255g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470