Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Newton's Method: an Updated Approach of Kantorovich's Theory
Details
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.
Up-to-date account of Kantorovich´s theory for Newton´s method Starts with a detailed presentation of Kantorovich´s approach and ends with new results and alternative approaches Contains many numerical examples involving nonlinear integral equations
Autorentext
José Antonio Ezquerro is Professor at the Department of Mathematics and Computation at the University of La Rioja in Spain.
M. A. Hernández-Verón is Professor at the Department of Mathematics and Computation at the University of La Rioja in Spain.
Inhalt
The classic theory of Kantorovich.- Convergence conditions on the second derivative of the operator.- Convergence conditions on the k-th derivative of the operator.- Convergence conditions on the first derivative of the operator.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319559759
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2017
- Anzahl Seiten 180
- Herausgeber Springer International Publishing
- Größe H240mm x B168mm x T11mm
- Jahr 2017
- EAN 9783319559759
- Format Kartonierter Einband
- ISBN 3319559753
- Veröffentlichung 14.07.2017
- Titel Newton's Method: an Updated Approach of Kantorovich's Theory
- Autor Miguel Ángel Hernández Verón , José Antonio Ezquerro Fernández
- Untertitel Frontiers in Mathematics
- Gewicht 313g
- Sprache Englisch