Non-Euclidean geometry

CHF 42.90
Auf Lager
SKU
1L23GLQ94BN
Stock 1 Verfügbar
Geliefert zwischen Fr., 19.09.2025 und Mo., 22.09.2025

Details

A non-Euclidean geometry is characterized by a non-vanishing Riemann curvature tensor it is the study of shapes and constructions that do not map directly to any n-dimensional Euclidean system. Examples of non-Euclidean geometries include the hyperbolic and elliptic geometry, which are contrasted with a Euclidean geometry. The essential difference between Euclidean and non-Euclidean geometry is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line and a point A, which is not on , there is exactly one line through A that does not intersect . In hyperbolic geometry, by contrast, there are infinitely many lines through A not intersecting , while in elliptic geometry, any line through A intersects (see the entries on hyperbolic geometry, elliptic geometry, and absolute geometry for more information).
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130261757
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Sprache Englisch
    • Genre Mathematik
    • Größe H220mm x B150mm x T5mm
    • Jahr 2009
    • EAN 9786130261757
    • Format Fachbuch
    • ISBN 978-613-0-26175-7
    • Titel Non-Euclidean geometry
    • Untertitel Euclidean geometry, Three-dimensional space, Higher dimension, Curved space, Non-Euclidean geometry, Albert Einstein, General relativity, History of geometry, Axiom
    • Gewicht 149g
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 88

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.