Non-Standard Parameter Adaptation for Exploratory Data Analysis

CHF 169.55
Auf Lager
SKU
EISB9U4LSM7
Stock 1 Verfügbar
Geliefert zwischen Do., 15.01.2026 und Fr., 16.01.2026

Details

A review of standard algorithms provides the basis for more complex data mining techniques in this overview of exploratory data analysis. Recent reinforcement learning research is presented, as well as novel methods of parameter adaptation in machine learning.


Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets.

We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods.

We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation.


Presents novel methods of parameter adaptation in machine learning Valuable contribution to create a true artificial intelligence Recent research in Reinforcement learning, cross entropy and artificial immune systems for exploratory data analysis

Inhalt
Review of Clustering Algorithms.- Review of Linear Projection Methods.- Non-standard Clustering Criteria.- Topographic Mappings and Kernel Clustering.- Online Clustering Algorithms and Reinforcement Learning.- Connectivity Graphs and Clustering with Similarity Functions.- Reinforcement Learning of Projections.- Cross Entropy Methods.- Artificial Immune Systems.- Conclusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642260551
    • Sprache Englisch
    • Auflage 2009
    • Größe H235mm x B155mm x T14mm
    • Jahr 2012
    • EAN 9783642260551
    • Format Kartonierter Einband
    • ISBN 3642260551
    • Veröffentlichung 14.03.2012
    • Titel Non-Standard Parameter Adaptation for Exploratory Data Analysis
    • Autor Wesam Ashour Barbakh , Colin Fyfe , Ying Wu
    • Untertitel Studies in Computational Intelligence 249
    • Gewicht 371g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 240
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470