Nonlinear Partial Differential Equations for Future Applications

CHF 190.95
Auf Lager
SKU
NP353110GT9
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible NavierStokes equations, new estimates for a compressible GrossPitaevskiiNavierStokes system, singular limits for the KellerSegel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.


Focuses on nonlinear PDEs in fluid mechanics, optimal control, and biochemical problems Includes contributions on maximal regularity and geometric analysis by internationally respected experts Combines recent topics and survey results in a volume appropriate for both experienced and young researchers

Inhalt
R. Denk, An Introduction To Maximal Regularity For Parabolic Evolution Equations.- Y. Kagei, On stability and bifurcation in parallel flows of compressible Navier-Stokes equations.- J. Fan and T. Ozawa, Uniform regularity for a compressible Gross-Pitaevskii-Navier-Stokes system.- T. Ogawa, Singular Limit Problem to the Keller-Segel System in Critical Spaces and Related Medical Problems An Application of Maximal Regularity.- A. Swiech, HJB Equation, Dynamic Programming Principle, and Stochastic Optimal Control.- S. Koike, Regularity of solutions of obstacle problems old & new.- A. Enciso, D. Peralta-Salas and F. Torres De Lizaur, High-Energy Eigenfunctions of the Laplacian on the Torus and The Sphere with Nodal Sets of Complicated Topology. <p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789813348240
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2021
    • Editor Shigeaki Koike, Shigeru Sakaguchi, Takayoshi Ogawa, Hideo Kozono
    • Anzahl Seiten 272
    • Herausgeber Springer Nature Singapore
    • Größe H235mm x B155mm x T15mm
    • Jahr 2022
    • EAN 9789813348240
    • Format Kartonierter Einband
    • ISBN 9813348240
    • Veröffentlichung 17.04.2022
    • Titel Nonlinear Partial Differential Equations for Future Applications
    • Untertitel Sendai, Japan, July 10-28 and October 2-6, 2017
    • Gewicht 417g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470