Normalizing Constant

CHF 49.20
Auf Lager
SKU
66F358SK8DJ
Stock 1 Verfügbar
Geliefert zwischen Fr., 26.09.2025 und Mo., 29.09.2025

Details

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! Bayes' theorem says that the posterior probability measure is proportional to the product of the prior probability measure and the likelihood function. Proportional to implies that one must multiply or divide by a normalizing constant to assign measure 1 to the whole space, i.e., to get a probability measure. In a simple discrete case we have where P(H0) is the prior probability that the hypothesis is true; P(D H0) is the conditional probability of the data given that the hypothesis is true, but given that the data are known it is the likelihood of the hypothesis (or its parameters) given the data; P(H0 D) is the posterior probability that the hypothesis is true given the data. P(D) should be the probability of producing the data, but on its own is difficult to calculate, so an alternative way to describe this relationship is as one of proportionality.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131135026
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131135026
    • Format Fachbuch
    • Titel Normalizing Constant
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.