Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Normally Hyperbolic Invariant Manifolds
Details
This book covers normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, and offers a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry.
This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems.
First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples.
The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context.
Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds.
A gentle introduction: examples, history, overview of methods Bridges nonlinear dynamics and differential geometry Includes various new results in bounded geometry Completely worked out persistence proof using the Perron method Multiple appendices with background material
Inhalt
Introduction.- Manifolds of bounded geometry.- Persistence of noncompact NHIMs.- Extension of results.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789462390423
- Lesemotiv Verstehen
- Genre Maths
- Auflage 2013
- Anzahl Seiten 189
- Herausgeber Atlantis Press
- Größe H235mm x B155mm x T11mm
- Jahr 2015
- EAN 9789462390423
- Format Kartonierter Einband
- ISBN 978-94-6239-042-3
- Veröffentlichung 03.10.2015
- Titel Normally Hyperbolic Invariant Manifolds
- Autor Jaap Eldering
- Untertitel The Noncompact Case
- Gewicht 3168g
- Sprache Englisch