Notes on Coxeter Transformations and the McKay Correspondence

CHF 131.95
Auf Lager
SKU
BSQVT33EJ31
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram.

The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers.

On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.


Includes supplementary material: sn.pub/extras

Autorentext

1980 - 1991, CAM (Center of Automation and Metrology), Academy of Sciences of Moldova, Project leader of experimental data processing.
Research and development of programs and mathematical tools for Academy of Sciences of Moldova,

999 2007, ECI Telecom (Electronics Corporation of Israel), Israel, Project leader in the Network Management department.
Research and development of algorithmes in the field of Communications and Big Systems.


Inhalt
Preliminaries.- The Jordan normal form of the Coxeter transformation.- Eigenvalues, splitting formulas and diagrams Tp,q,r.- R. Steinberg's theorem, B. Kostant's construction.- The affine Coxeter transformation.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer Berlin Heidelberg
    • Gewicht 559g
    • Untertitel Springer Monographs in Mathematics
    • Autor Rafael Stekolshchik
    • Titel Notes on Coxeter Transformations and the McKay Correspondence
    • Veröffentlichung 11.02.2008
    • ISBN 3540773983
    • Format Fester Einband
    • EAN 9783540773986
    • Jahr 2008
    • Größe H241mm x B160mm x T19mm
    • Anzahl Seiten 260
    • Lesemotiv Verstehen
    • Auflage 2008
    • GTIN 09783540773986

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470