Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
Details
This book describes numerical methods for partial differential equations (PDEs) coupling advection, diffusion and reaction terms, encompassing methods for hyperbolic, parabolic and stiff and nonstiff ordinary differential equations (ODEs). The emphasis is on time-dependent transport-chemistry problems. Many of the theoretical aspects are illustrated by numerical experiments on models from biology, chemistry and physics. A unified approach is followed by emphasizing the method of lines or semi-discretization. This book treats integration methods suitable for both classes of problems and thus is of interest to PDE researchers unfamiliar with advanced numerical ODE methods, as well as to ODE researchers unaware of the vast amount of interesting results on numerical PDEs.
Monograph on topic with strong importance for applications Includes supplementary material: sn.pub/extras
Inhalt
I Basic Concepts and Discretizations.- II Time Integration Methods.- III Advection-Diffusion Discretizations.- IV Splitting Methods.- V Stabilized Explicit Runge-Kutta Methods.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642057076
- Auflage Softcover reprint of the original 1st edition 2003
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T27mm
- Jahr 2010
- EAN 9783642057076
- Format Kartonierter Einband
- ISBN 3642057071
- Veröffentlichung 16.12.2010
- Titel Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
- Autor Jan G. Verwer , Willem Hundsdorfer
- Untertitel Springer Series in Computational Mathematics 33
- Gewicht 727g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 484