On Hierarchical Models for Visual Recognition and Learning of Objects, Scenes, and Activities

CHF 137.25
Auf Lager
SKU
K52JBQETL86
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time.


Provides important basic concepts, efficient methods as well as practical "how-to" examples for the use of hierarchical graphical models Discusses the importance and the relationship between sharing and similarity of objects and object parts for efficient recognition and learning approaches Comprehensive survey of related work divided in categories such as part-based, compositional or biologically inspired models Includes a brief review of probabilistic graphical models

Inhalt
Introduction.- Probabilistic Graphical Models.- Hierarchical Graphical Models.- Learning of Hierarchical Models.-Object Recognition.- Human Pose Estimation.- Scene Understanding for Intelligent Vehicles.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319358628
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage Softcover reprint of the original 1st edition 2015
    • Sprache Englisch
    • Anzahl Seiten 216
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T12mm
    • Jahr 2016
    • EAN 9783319358628
    • Format Kartonierter Einband
    • ISBN 3319358626
    • Veröffentlichung 01.10.2016
    • Titel On Hierarchical Models for Visual Recognition and Learning of Objects, Scenes, and Activities
    • Autor Jens Spehr
    • Untertitel Studies in Systems, Decision and Control 11
    • Gewicht 335g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470