Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
On-line Linear Discriminant Classifier
Details
We present an on-line Linear Discriminant Classifier for streaming data (O-LDC). This is an adaptation of the Linear Discriminant Classifier, with the class means and the inverse covariance matrix re-calculated after each new data point. The classifier satisfies the properties of an on-line classifier; it learns from a single pass through the data, uses limited memory and processing power, and exhibits any-time learning. We compare the O-LDC with on-line versions of the Perceptron and balanced Winnow classifiers. Comparisons are carried out across a series of static data sets made up of two classes. The O-LDC shows higher accuracy and a better learning rate than its counterparts. As a second task we consider delayed labelling. We propose two strategies. The passive strategy waits for the correct label of a data point before using it to update the classifier. The aggressive strategy, makes use of naïve labelling, using the predicted label of a data point to update the classifier. The strategies are compared across a series of static data sets. The final accuracy of both strategies was comparable, though the passive strategy showed a better learning pattern.
Autorentext
Catrin Plumpton has an MMath degree and an M.Sc. in Computer Science from the University of Wales, Bangor. Having completed her M.Sc. in 2007 she then began a Ph.D. at Bangor University (the university having changed its name upon becoming autonomous in the same year).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639175868
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9783639175868
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-17586-8
- Titel On-line Linear Discriminant Classifier
- Autor Catrin Plumpton
- Untertitel and its Application to Delayed Labelling
- Herausgeber VDM Verlag
- Anzahl Seiten 64
- Genre Mathematik