Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
On the Classification of Rational Plane Curves of Type (d,m)
Details
Let C P²=P²(C) be a rational plane curve of degree d and let denote the maximal multiplicity of the singular points of C. We say that C is of type (d, ). Let P C be a singular point, and let r{P} be the number of the branches of C at P. Set (C)= {P Sing(C)}(r_{P}-1). We say that C is of type (d, , ) if C is of type (d, ) and = (C). We classify all rational plane curves of type (d,d-2). We give the complete list of all rational plane curves of type (d,d-2). In particular, we provide an inductive algorithm to construct such curves. Furthermore, we show that any such curve C is transformable into a line by a Cremona transformation. We also construct some classes of rational plane curves of type (d,d-3,1).
Autorentext
A lecturer in Algebraic Geometry, Mathematics department, Faculty of science, Sohag University, Egypt.
Klappentext
Let C P²=P²(C) be a rational plane curve of degree d and let denote the maximal multiplicity of the singular points of C. We say that C is of type (d, ). Let P C be a singular point, and let r{P} be the number of the branches of C at P. Set (C)= {P Sing(C)}(r_{P}-1). We say that C is of type (d, , ) if C is of type (d, ) and = (C). We classify all rational plane curves of type (d,d-2). We give the complete list of all rational plane curves of type (d,d-2). In particular, we provide an inductive algorithm to construct such curves. Furthermore, we show that any such curve C is transformable into a line by a Cremona transformation. We also construct some classes of rational plane curves of type (d,d-3,1).
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 167g
- Untertitel Rational Plane Curves of Types (d,d-2) and (d,d-3,1)
- Autor Mohammed Abuelhassan
- Titel On the Classification of Rational Plane Curves of Type (d,m)
- Veröffentlichung 30.05.2011
- ISBN 3844399887
- Format Kartonierter Einband
- EAN 9783844399882
- Jahr 2011
- Größe H220mm x B150mm x T6mm
- Anzahl Seiten 100
- GTIN 09783844399882