On the Classification of Rational Plane Curves of Type (d,m)

CHF 57.55
Auf Lager
SKU
C8TO35B8PHG
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Let C P²=P²(C) be a rational plane curve of degree d and let denote the maximal multiplicity of the singular points of C. We say that C is of type (d, ). Let P C be a singular point, and let r{P} be the number of the branches of C at P. Set (C)= {P Sing(C)}(r_{P}-1). We say that C is of type (d, , ) if C is of type (d, ) and = (C). We classify all rational plane curves of type (d,d-2). We give the complete list of all rational plane curves of type (d,d-2). In particular, we provide an inductive algorithm to construct such curves. Furthermore, we show that any such curve C is transformable into a line by a Cremona transformation. We also construct some classes of rational plane curves of type (d,d-3,1).

Autorentext

A lecturer in Algebraic Geometry, Mathematics department, Faculty of science, Sohag University, Egypt.


Klappentext

Let C P²=P²(C) be a rational plane curve of degree d and let denote the maximal multiplicity of the singular points of C. We say that C is of type (d, ). Let P C be a singular point, and let r{P} be the number of the branches of C at P. Set (C)= {P Sing(C)}(r_{P}-1). We say that C is of type (d, , ) if C is of type (d, ) and = (C). We classify all rational plane curves of type (d,d-2). We give the complete list of all rational plane curves of type (d,d-2). In particular, we provide an inductive algorithm to construct such curves. Furthermore, we show that any such curve C is transformable into a line by a Cremona transformation. We also construct some classes of rational plane curves of type (d,d-3,1).

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 167g
    • Untertitel Rational Plane Curves of Types (d,d-2) and (d,d-3,1)
    • Autor Mohammed Abuelhassan
    • Titel On the Classification of Rational Plane Curves of Type (d,m)
    • Veröffentlichung 30.05.2011
    • ISBN 3844399887
    • Format Kartonierter Einband
    • EAN 9783844399882
    • Jahr 2011
    • Größe H220mm x B150mm x T6mm
    • Anzahl Seiten 100
    • GTIN 09783844399882

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470