On The Linear Group PSL(10, q) Over A Finite Field q = 2^n

CHF 98.00
Auf Lager
SKU
FFP79VS94DI
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The present work will investigate the projective special linear group of dimension 10 over a finite field Fq i.e PSL(10, 2^n)and its maximal subgroups. The main result is a list of maximal subgroups called "the main theorem" which has been proved by using the following well known result "That the minimal normal subgroup of any finite group is either an elementary abelian p-group for some prime number p or a direct product of isomorphic non-abelian simple groups". So, we divided our work into four chapters, the first one "background materials", while chapter two covers, the calculation of the conjugacy classes and the structure of centralizer for the linear group of dimension 10 over a finite field Fq . Chapter three deals with the local analysis for calculating the imprimitive subgroups of G. The fourth chapter deals with the minimal normal subgroups which are the direct product of isomorphic non-Abelian simple groups, this chapter contains three cases: The minimal normal subgroups contains transvections.The minimal normal subgroups does not contain any transvection. The minimal normal subgroups is doubly transitive.

Autorentext

Rauhi Ibrahim Elkhatib,was born in Egypt in 1968. He has B.Sc. In Mathematics, 1990.He has M.Sc. In Mathematics, Algebra, 1998. .He has PhD.In Algebra, 2008.He is working as Assistant Prof. of Algebra in Thamar University, Yemen.He published three books "Calculus I, Calculus II, Differential equations, " in Dar El-Massera, 2012, Jordan.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783848424764
    • Sprache Englisch
    • Größe H220mm x B220mm x T150mm
    • Jahr 2012
    • EAN 9783848424764
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-8484-2476-4
    • Titel On The Linear Group PSL(10, q) Over A Finite Field q = 2^n
    • Autor Rauhi Elkatib
    • Untertitel The maximal subgroups of the linear group PSL(10,q), q=2^n
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 276
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470