Open Mapping Theorem (Functional Analysis)

CHF 37.35
Auf Lager
SKU
USNUF2LECPE
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In functional analysis, the open mapping theorem, also known as the Banach Schauder theorem, is a fundamental result which states that if a continuous linear operator between Banach spaces is surjective then it is an open map. More precisely, (Rudin 1973, Theorem 2.11): If X and Y are Banach spaces and A : X Y is a surjective continuous linear operator, then A is an open map (i.e. if U is an open set in X, then A(U) is open in Y). The proof uses the Baire category theorem, and completeness of both X and Y is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a normed space, but is true if X and Y are taken to be Fréchet spaces.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131305108
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131305108
    • Format Fachbuch
    • Titel Open Mapping Theorem (Functional Analysis)
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 72
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470