Operator Space Tensor Norms

CHF 91.75
Auf Lager
SKU
P7HABVTJUVQ
Stock 1 Verfügbar
Geliefert zwischen Fr., 21.11.2025 und Mo., 24.11.2025

Details

This book provides a comprehensive introduction to the systematic theory of tensor products and tensor norms within the framework of operator spaces. The use of tensor products has significantly advanced functional analysis and other areas of mathematics and physics, and the field of operator spaces is no exception. Building on the theory of tensor products in Banach spaces, this work adapts the definitions and results to the operator space context. This approach goes beyond a mere translation of existing results. It introduces new insights, techniques, and hypotheses to address the many challenges of the non-commutative setting, revealing several notable differences to the classical theory. This text is expected to be a valuable resource for researchers and advanced students in functional analysis, operator theory, and related fields, offering new perspectives for both the mathematics and physics communities. By presenting several open problems, it also serves as a potential source for further research, particularly for those working in operator spaces or operator algebras.


Introduces a systematic theory of tensor products and norms in the non-commutative framework Offers new tools and perspectives in the context of operator space theory Highlights key differences compared to the classical theory of tensor products

Autorentext

Javier Alejandro Chávez-Domínguez is an Associate Professor in the Department of Mathematics of the University of Oklahoma (USA). His main research interest is Functional Analysis with an emphasis on its non-linear and non-commutative aspects, particularly Operator Spaces, Tensor Products and Operator Ideals, and Quantum Graphs/Metric Spaces. Verónica Dimant is a Full Professor at the University of San Andrés (Argentina) and Independent Researcher at CONICET. Her research interest lies in Non-linear Functional Analysis with a focus on Holomorphy, Polynomials and Tensor Products in Banach spaces and operator spaces. Daniel Galicer is an Associate Professor at Universidad Torcuato Di Tella (Argentina) and an Independent Researcher at IMAS-CONICET. His research focuses on Functional Analysis, with an emphasis on the Local Theory of Banach Spaces, Infinite-Dimensional Analysis, Asymptotic Geometric Analysis, Tensor Products, and the interactions between Analysis and Probability.


Inhalt

Chapter 1. Preliminaries.- Chapter 2. Introduction to operator space tensor norms.- Chapter 3. Finite and cofinite hulls.- Chapter 4. The five basic lemmas.- Chapter 5. Dual operator space tensor norms.- Chapter 6. The completely bounded approximation property.- Chapter 7. Mapping ideals.- Chapter 8. Maximal operator space mapping ideals.- Chapter 9. Minimal operator space mapping ideals.- Chapter 10. Completely projective/injective tensor norms.- Chapter 11. Injective/projective hulls and accessibility.- Chapter 12. Natural operator space tensor norms.- Chapter 13. Conclusions and some open questions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031962080
    • Lesemotiv Verstehen
    • Genre Maths
    • Anzahl Seiten 208
    • Herausgeber Palgrave Macmillan
    • Größe H235mm x B155mm x T12mm
    • Jahr 2025
    • EAN 9783031962080
    • Format Kartonierter Einband
    • ISBN 3031962087
    • Veröffentlichung 27.09.2025
    • Titel Operator Space Tensor Norms
    • Autor Javier Alejandro Chávez-Domínguez , Verónica Dimant , Daniel Galicer
    • Untertitel Lecture Notes in Mathematics 2379
    • Gewicht 324g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470