Optimization of Neural Network Parameter using Genetic Algorithm

CHF 57.55
Auf Lager
SKU
CAH7GH2HP77
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

Genetic Algorithms are one of the most powerful techniques in optimization and search problems. The Objective was, to understand this powerful technique and to explain it in better way so as to expand its field of application.The algorithm is so versatile that it can be used in any field.The objective of the GA is to find an optimal solution to a problem. Since Gas is heuristic procedures, they are not guaranteed to find the optimal solution, but they are able to find very good solutions for a wide range of problems.The use of both, genetic algorithms and artificial neural networks, was originally motivated by the astonishing success of these concepts in there biological counterparts.Despite their totally deferent approaches, both can merely be seen as optimization methods, which are used in a wide range of applications.They are capable to finding solution to hard NP-based Problems. Neural Networks utilizing back propagation based learning have promisingly showed results to a vast variety of function and problems. TSP is one such classical problem for theoretical computation.

Autorentext

Prof. Gaurang Panchal is Currently working as Assistant Professor at Charotar University of Science and Technology, Changa, India.His area of interest includes Soft Computing, Artificial Intelligence and Biometrics.His is Currently pursuing Ph.D at IIT Kharagpur in the field of Multimodal Biometrics System.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 92
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 155g
    • Untertitel Extraction of Neural Network Weights using Genetic Algorithm Based Back propagation Network
    • Autor Gaurang Panchal , Amit Ganatra
    • Titel Optimization of Neural Network Parameter using Genetic Algorithm
    • Veröffentlichung 08.04.2012
    • ISBN 3848447479
    • Format Kartonierter Einband
    • EAN 9783848447473
    • Jahr 2012
    • Größe H220mm x B150mm x T6mm
    • Auflage Aufl.
    • GTIN 09783848447473

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470