Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Optimized Cloud Based Scheduling
Details
This book presents an improved design for service provisioning and allocation models that are validated through running genome sequence assembly tasks in a hybrid cloud environment. It proposes approaches for addressing scheduling and performance issues in big data analytics and showcases new algorithms for hybrid cloud scheduling. Scientific sectors such as bioinformatics, astronomy, high-energy physics, and Earth science are generating a tremendous flow of data, commonly known as big data. In the context of growing demand for big data analytics, cloud computing offers an ideal platform for processing big data tasks due to its flexible scalability and adaptability. However, there are numerous problems associated with the current service provisioning and allocation models, such as inefficient scheduling algorithms, overloaded memory overheads, excessive node delays and improper error handling of tasks, all of which need to be addressed to enhance the performance of big data analytics.
Presents an improved design for service provisioning and allocation models in a hybrid cloud environment Proposes approaches for addressing scheduling and performance issues in big data analytics Showcases new algorithms for hybrid cloud scheduling
Inhalt
Introduction.- Background.- Benchmarking.- Computation of Large Datasets.- Optimized Online Scheduling Algorithms.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030103330
- Auflage Softcover reprint of the original 1st edition 2018
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T7mm
- Jahr 2019
- EAN 9783030103330
- Format Kartonierter Einband
- ISBN 3030103331
- Veröffentlichung 11.02.2019
- Titel Optimized Cloud Based Scheduling
- Autor Rong Kun Jason Tan , Amandeep S. Sidhu , John A. Leong
- Untertitel Studies in Computational Intelligence 759 - Data, Semantics and Cloud Computing
- Gewicht 189g
- Herausgeber Springer International Publishing
- Anzahl Seiten 116