Optimum Seismic Design of Steel Buildings Using Genetic Algorithms

CHF 52.35
Auf Lager
SKU
UHTR5CH1C4T
Stock 1 Verfügbar
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026

Details

The aim of this work is to study the optimum design of moment resisting steel frame based on the modern technique of Continuous Genetic Algorithm. With this technique, one can benefit from capabilities of traditional genetic algorithm without reformulation of the problem in the binary system. Matlab program is used in coding process of the continuous genetic algorithm. Frame topology is assumed predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variable in this study. Columns and beams are grouped to reduce number of design variables and to make the problem similar to that adopted in engineering practice. Explicit function formulation with the meta-model makes classical and metaheuristic optimization algorithms, which have been developed and tested in other disciplines, directly applicable for structural optimization problems. Finally, eighteen case studies were considered. Nine case studies for optimum weight and nine case studies for optimum cost. Different number of stories, different number of bays, and different connection details were considered.

Autorentext

Dr. Salah R. Al-Zaidee was born in Baghdad, 1976. B.Sc.1998, M.Sc.2001, Ph.D 2007. Current position: lecture in Civil Engineering College of Engineering Baghdad University. Ali S. Mahdi was born in Baghdad, 1990. B.Sc.2012, M.Sc.2016. Current position: Ph.D student in Civil Engineering College of Engineering Baghdad University.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783330070417
    • Sprache Englisch
    • Genre Biology
    • Größe H220mm x B150mm x T9mm
    • Jahr 2017
    • EAN 9783330070417
    • Format Kartonierter Einband
    • ISBN 978-3-330-07041-7
    • Veröffentlichung 23.11.2017
    • Titel Optimum Seismic Design of Steel Buildings Using Genetic Algorithms
    • Autor Salah R. Al Zaidee , Ali S. Mahdi
    • Gewicht 251g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 156

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470