Orbital Integral

CHF 53.20
Auf Lager
SKU
RIGO5O9466V
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, an orbital integral is an integral transform that generalizes the spherical mean operator to homogeneous spaces. Instead of integrating over spheres, one integrates over generalized spheres: for a homogeneous space X = G/H, a generalized sphere centered at a point x0 is an orbit of the isotropy group of x0.A central problem of integral geometry is to reconstruct a function from knowledge of its orbital integrals. The Funk transform and Radon transform are two special cases. When G/K is a Riemannian symmetric space, the problem is trivial, since Mr (x) is the average value of over the generalized sphere of radius r, and f(x) = lim_{rto 0^+} M^rf(x). , When K is compact (but not necessarily symmetric), a similar trick works. The problem is more interesting when K is non-compact. The Radon transform, for example, is the orbital integral that results by taking G to be the Euclidean isometry group and K the isotropy group of a hyperplane.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131295195
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131295195
    • Format Fachbuch
    • Titel Orbital Integral
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 120
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.