Orthogonal Matrix

CHF 43.20
Auf Lager
SKU
50NB77DHHI5
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In linear algebra, an orthogonal matrix is a square matrix with real entries whose columns (or rows) are orthogonal unit vectors (i.e., orthonormal). Because the columns are unit vectors in addition to being orthogonal, some people use the term orthonormal to describe such matrices. An orthogonal matrix Q is necessarily square and invertible, with inverse Q 1 = QT. As a linear transformation, an orthogonal matrix preserves the dot product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation or reflection. In other words, it is a unitary transformation.

Klappentext

High Quality Content by WIKIPEDIA articles! In linear algebra, an orthogonal matrix is a square matrix with real entries whose columns (or rows) are orthogonal unit vectors (i.e., orthonormal). Because the columns are unit vectors in addition to being orthogonal, some people use the term orthonormal to describe such matrices. An orthogonal matrix Q is necessarily square and invertible, with inverse Q-1 = QT. As a linear transformation, an orthogonal matrix preserves the dot product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation or reflection. In other words, it is a unitary transformation.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130315641
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9786130315641
    • Format Fachbuch
    • ISBN 978-613-0-31564-1
    • Titel Orthogonal Matrix
    • Untertitel Linear algebra, Matrix (mathematics), Unit Vector, Transpose, Invertible Matrix, Linear Map, Dot Product, Isometry, Unitary Transformation, Orthogonal Group, Unitary Matrix
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470