Packing in a Hypergraph
CHF 42.90
Auf Lager
SKU
K0OT9GHG7LJ
Geliefert zwischen Mi., 24.09.2025 und Do., 25.09.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, a packing in a hypergraph is a partition of the set of the hypergraph's edges into a number of disjoint subsets such that no pair of edges in each subset share any vertex. There are two famous algorithms to achieve asymptotically optimal packing in k-uniform hypergraphs. One of them is a random greedy algorithm which was proposed by Joel Spencer. He used a branching process to formally prove the optimal achievable bound under some side conditions. The other algorithm is called Rödl nibble and was proposed by Vojtech Rödl et al. They showed that the achievable packing by Rödl nibble is in some sense close to that of the random greedy algorithm.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130335717
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Genre Mathematik
- Größe H220mm x B5mm x T150mm
- Jahr 2010
- EAN 9786130335717
- Format Kartonierter Einband
- ISBN 978-613-0-33571-7
- Titel Packing in a Hypergraph
- Untertitel Partition of a Set, Hypergraph, Greedy Algorithm, Joel Spencer, Branching Process, Paul Erdos, Poisson Distribution, Covering Number, Noga Alon
- Gewicht 150g
- Herausgeber Betascript Publishers
- Anzahl Seiten 88
Bewertungen
Schreiben Sie eine Bewertung