Parabolic Partial Differential Equation
CHF 42.90
Auf Lager
SKU
V1P8JE6PMOC
Geliefert zwischen Mo., 22.09.2025 und Di., 23.09.2025
Details
High Quality Content by WIKIPEDIA articles! A parabolic partial differential equation is a type of second-order partial differential equation, describing a wide family of problems in science including heat diffusion and stock option pricing. These problems, also known as evolution problems, describe physical or mathematical systems with a time variable, and which behave essentially like heat diffusing through a medium like a metal plate. Under broad assumptions, parabolic PDEs as given above have solutions for all x,y and t 0. An equation of the form ut = L(u) is considered to be parabolic if L is a (possibly nonlinear) function of u and its first and second derivatives, with some further conditions on L. With such a nonlinear parabolic differential equation, solutions exist for a short time but may explode in a singularity in a finite amount of time. Hence, the difficulty is in determining solutions for all time, or more generally studying the singularities that arise. This is in general quite difficult, as in the Solution of the Poincaré conjecture via Ricci flow.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130348168
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Genre Mathematik
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9786130348168
- Format Kartonierter Einband
- ISBN 978-613-0-34816-8
- Titel Parabolic Partial Differential Equation
- Untertitel Partial Differential Equation, Heat Equation, Black-Scholes, Parabola, Elliptic Operator, Ricci Flow, Hyperbolic Partial Differential Equation, Heat, Probability Theory
- Gewicht 165g
- Herausgeber Betascript Publishers
- Anzahl Seiten 100
Bewertungen
Schreiben Sie eine Bewertung