Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Parallel-in-Time Integration Methods
Details
This volume includes contributions from the 9th Parallel-in-Time (PinT) workshop, an annual gathering devoted to the field of time-parallel methods, aiming to adapt existing computer models to next-generation machines by adding a new dimension of scalability. As the latest supercomputers advance in microprocessing ability, they require new mathematical algorithms in order to fully realize their potential for complex systems. The use of parallel-in-time methods will provide dramatically faster simulations in many important areas, including biomedical (e.g., heart modeling), computational fluid dynamics (e.g., aerodynamics and weather prediction), and machine learning applications. Computational and applied mathematics is crucial to this progress, as it requires advanced methodologies from the theory of partial differential equations in a functional analytic setting, numerical discretization and integration, convergence analyses of iterative methods, and the development and implementation of new parallel algorithms. Therefore, the workshop seeks to bring together an interdisciplinary group of experts across these fields to disseminate cutting-edge research and facilitate discussions on parallel time integration methods.
Presents latest research in the field of parallel time integration methods Aimed at researchers and practitioners in government, industry and academia
Inhalt
Tight two-level convergence of linear Parareal and MGRIT: Extensions and implications in practice (Southworth et al.).- A Parallel algorithm for solving linear parabolic evolution equations (van Venetië et al.).- Using performance analysis tools for a parallel-in-time integrator (Speck et al.).- Twelve Ways to Fool the Masses When Giving Parallel-In-Time Results (Götschel et al.).- IMEX Runge-Kutta Parareal for Non-Diffusive Equations (Buvoli et al.).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030759322
- Lesemotiv Verstehen
- Genre Maths
- Editor Benjamin Ong, Jacob Schroder, Jemma Shipton, Stephanie Friedhoff
- Anzahl Seiten 140
- Herausgeber Springer
- Größe H241mm x B160mm x T14mm
- Jahr 2021
- EAN 9783030759322
- Format Fester Einband
- ISBN 3030759326
- Veröffentlichung 25.08.2021
- Titel Parallel-in-Time Integration Methods
- Untertitel 9th Parallel-in-Time Workshop, June 8-12, 2020
- Gewicht 383g
- Sprache Englisch