Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Parameter Estimation in Stochastic Volatility Models
Details
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Presents step-by-step tutorials to help the reader to learn quickly Prepares readers for future developments via a chapter on next generation Flash Includes ten tips on how to protect flash sites from cyber attacks
Inhalt
Stochastic Volatility Models: Methods of Pricing, Hedging and Estimation.- Sequential Monte Carlo Methods.- Parameter Estimation in the Heston Model.- Fractional Ornstein-Uhlenbeck Processes, Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck Processes.- Inference for General Semimartingales and Selfsimilar Processes.- Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility Model.- Berry-Esseen Inequalities for the Functional Ornstein-Uhlenbeck-Inverse-Gaussian Process.- Maximum Quasi-likelihood Estimation in Fractional Levy Stochastic Volatility Model.- Estimation in Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model.- Parameter Estimation in Student Ornstein-Uhlenbeck Model.- Berry-Esseen Asymptotics for Pearson Diffusions.- Bayesian Maximum Likelihood Estimation in Fractional Stochastic Volatility Models.- Berry-Esseen-Stein-Malliavin Theory for Fractional Ornstein-Uhlenbeck Process.- Approximate Maximum Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model.- Appendix.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031038631
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2022
- Anzahl Seiten 644
- Herausgeber Springer Nature Switzerland
- Größe H235mm x B155mm x T35mm
- Jahr 2023
- EAN 9783031038631
- Format Kartonierter Einband
- ISBN 3031038630
- Veröffentlichung 07.08.2023
- Titel Parameter Estimation in Stochastic Volatility Models
- Autor Jaya P. N. Bishwal
- Gewicht 961g
- Sprache Englisch