Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Parameter Setting in Evolutionary Algorithms
Details
One of the main difficulties of applying an evolutionary algorithm (or, as a matter of fact, any heuristic method) to a given problem is to decide on an appropriate set of parameter values. Typically these are specified before the algorithm is run and include population size, selection rate, operator probabilities, not to mention the representation and the operators themselves. This book gives the reader a solid perspective on the different approaches that have been proposed to automate control of these parameters as well as understanding their interactions. The book covers a broad area of evolutionary computation, including genetic algorithms, evolution strategies, genetic programming, estimation of distribution algorithms, and also discusses the issues of specific parameters used in parallel implementations, multi-objective evolutionary algorithms, and practical consideration for real-world applications. It is a recommended read for researchers and practitioners of evolutionary computation and heuristic methods.
Recent advances in evolutionary algorithms Includes supplementary material: sn.pub/extras
Inhalt
Parameter Setting in EAs: a 30 Year Perspective.- Parameter Control in Evolutionary Algorithms.- Self-Adaptation in Evolutionary Algorithms.- Adaptive Strategies for Operator Allocation.- Sequential Parameter Optimization Applied to Self-Adaptation for Binary-Coded Evolutionary Algorithms.- Combining Meta-EAs and Racing for Difficult EA Parameter Tuning Tasks.- Genetic Programming: Parametric Analysis of Structure Altering Mutation Techniques.- Parameter Sweeps for Exploring Parameter Spaces of Genetic and Evolutionary Algorithms.- Adaptive Population Sizing Schemes in Genetic Algorithms.- Population Sizing to Go: Online Adaptation Using Noise and Substructural Measurements.- Parameter-less Hierarchical Bayesian Optimization Algorithm.- Evolutionary Multi-Objective Optimization Without Additional Parameters.- Parameter Setting in Parallel Genetic Algorithms.- Parameter Control in Practice.- Parameter Adaptation for GP Forecasting Applications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642088926
- Auflage Softcover reprint of hardcover 1st edition 2007
- Editor F. J. Lobo, Zbigniew Michalewicz, Cláudio F. Lima
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T19mm
- Jahr 2010
- EAN 9783642088926
- Format Kartonierter Einband
- ISBN 3642088929
- Veröffentlichung 30.11.2010
- Titel Parameter Setting in Evolutionary Algorithms
- Untertitel Studies in Computational Intelligence 54
- Gewicht 505g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 332