Particle Filters for Random Set Models

CHF 191.80
Auf Lager
SKU
CJ8JSFEOKOP
Stock 1 Verfügbar
Geliefert zwischen Mo., 19.01.2026 und Di., 20.01.2026

Details

This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.

Presents a hands-on engineering approach to filtering algorithms and their implementation Covers a new generation of particle filters, which are applicable to a much wider class of signal processing applications Includes sensor control for particle filters Provides information on a number of interesting and relevant applications, which illustrate theoretical concepts and demonstrate the performance of developed particle filters

Autorentext

Branko Ristic is at the Defence Science and Technology Organisation, Australia Defence Science and Technology Organisation, Australia

Klappentext
Particle Filters for Random Set Models presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. The resulting algorithms, known as particle filters, in the last decade have become one of the essential tools for stochastic filtering, with applications ranging from navigation and autonomous vehicles to bio-informatics and finance.

While particle filters have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. These recent developments have dramatically widened the scope of applications, from single to multiple appearing/disappearing objects, from precise to imprecise measurements and measurement models.

This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.

Inhalt
Introduction.- References.- Background.- A brief review of particle filters.- Online sensor control.- Non-standard measurements.- Imprecise measurements.- Imprecise measurement function.- Uncertain implication rules.- Particle filter implementation.- Applications.- Multiple objects and imperfect detection.- Random finite sets.- Multi-object stochastic filtering.- OSPA metric.- Specialized multi-object filters.- Bernoulli filter.- PHD and CPHD filter.- References.- Applications involving non-standard measurements.- Estimation using imprecise measurement models.- Localization using the received signal strength.- Prediction of an epidemic using syndromic data.- Summary.- Fusion of spatially referring natural language statements.- Language, space and modelling.- An illustrative example.- Classification using imprecise likelihoods.- Modelling.- Classification results.- References.- object particle filters.- Bernoulli particle filters.- Standard Bernoulli particle filters.- Bernoulli box-particle filter.- PHD/CPDH particle filters with adaptive birth intensity.- Extension of the PHD filter.- Extension of the CPHD filter.- Implementation.- A numerical study.- State estimation from PHD/CPHD particle filters.- Particle filter approximation of the exact multi-object filter.- References.- Sensor control for random set based particle filters.- Bernoulli particle filter with sensor control.- The reward function.- Bearings only tracking in clutter with observer control.- Target Tracking via Multi-Static Doppler Shifts.- Sensor control for PHD/CPHD particle filters.- The reward function.- A numerical study.- Sensor control for the multi-target state particle filter.- Particle approximation of the reward function.- A numerical study.- References.- Multi-target tracking.- OSPA-T: A performance metric for multi-target tracking.- The problem and its conceptual solution.- The base distance and labeling of estimated tracks.- Numerical examples.- Trackers based on random set filters.- Multi-target trackers based on the Bernoulli PF.- Multi-target trackers based on the PHD particle filter.- Error performance comparison using the OSPA-T error.- Application: Pedestrian tracking.- Video dataset and detections.- Description of Algorithms.- Numerical results.- References.- Advanced topics.- Filter for extended target tracking.- Mathematical models.- Equations of the Bernoulli filter for an extended target.- Numerical Implementation.- Simulation results.- Application to a surveillance video.- Calibration of tracking systems.- Background and problem formulation.- The proposed calibration algorithm.- Importance sampling with progressive correction.- Application to sensor bias estimation.- References.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781461463153
    • Genre Elektrotechnik
    • Auflage 2013
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 188
    • Größe H241mm x B160mm x T14mm
    • Jahr 2013
    • EAN 9781461463153
    • Format Fester Einband
    • ISBN 1461463157
    • Veröffentlichung 15.04.2013
    • Titel Particle Filters for Random Set Models
    • Autor Branko Ristic
    • Gewicht 453g
    • Herausgeber Springer New York

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470