Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Pauli Matrices
CHF 57.00
Auf Lager
SKU
DNO7ITU24H1
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026
Details
High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In physics, the Pauli matrices are a set of 2 × 2 complex Hermitian and unitary matrices (See also ref.[1]). Usually indicated by the Greek letter 'sigma' ( ), they are occasionally denoted with a 'tau' ( ) when used in connection with isospin symmetries. They are: sigma1 = sigmax = begin{pmatrix} 0&1 1&0 end{pmatrix} sigma2 = sigmay = begin{pmatrix} 0&-i i&0 end{pmatrix} sigma3 = sigmaz = begin{pmatrix} 1&0 0&-1 end{pmatrix}. The name refers to Wolfgang Pauli. The real (hence also, complex) subalgebra generated by the i (that is, the set of real or complex linear combinations of all the elements which can be built up as products of Pauli matrices) is the full set M2(C) of complex 2×2 matrices. The i can also be seen as generating the real Clifford algebra of the real quadratic form with signature (3,0): this shows that this Clifford algebra C 3,0(R) is isomorphic to M2(C), with the Pauli matrices providing an explicit isomorphism. (In particular, the Pauli matrices define a faithful representation of the real Clifford algebra C 3,0(R) on the complex vector space C2 of dimension 2.)
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130335830
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H218mm x B149mm x T15mm
- Jahr 2010
- EAN 9786130335830
- Format Fachbuch
- ISBN 978-613-0-33583-0
- Titel Pauli Matrices
- Untertitel Hermitian Matri, Complex Number, Unitary Matrix, Matrix, Isospin, Wolfgang Pauli, Subalgebra, Linear Combination, Clifford Algebra, Metric Signature, Angular Momentum, Gell-Mann Atrices
- Gewicht 216g
- Herausgeber Betascript Publishers
- Anzahl Seiten 132
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung