Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Perceptual Inference for Autonomous Navigation
Details
Environment sensing is required in order for robots to operate safely in either shared workspaces between robots and human or unpredictable natural environments. However, available perceptual inference algorithms require many smoothness assumptions such as a flat ground plane, straight walls, etc; thus their efficiency depends on the degree of smoothness of the beliefs. Indeed, current autonomous navigation techniques only work well in highly structured environments, but fail to deal with cluttered outdoor environments. Particularly, vegetated terrain introduces one more degree of freedom to the problem that what is considered as an "obstacle" from a purely geometric point of view, may not represent a danger for the robot if it is composed of compressible vegetation. Motivated by concrete robotics problems, we explicitly pursue solutions for vegetation detection and terrain classification, which have recently become the core of any control system for advance autonomous navigation in outdoor environments.
Autorentext
Mr. Nguyen received his PhD in Robotics and Pattern Recognition at University of Siegen, Germany, 2013. He has served as a reviewer/member of Editorial Board for journals of RAS, IJCVSP and IJEI, and as a reviewer/member of Technical Program Committees for a number of IEEE conferences(IV'14,ITSC'14,ICIEV'14, IROS'13,ITSC'13,IV'13,ICIEV'13,etc.).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838139883
- Genre Elektrotechnik
- Sprache Englisch
- Anzahl Seiten 268
- Größe H220mm x B150mm x T17mm
- Jahr 2016
- EAN 9783838139883
- Format Kartonierter Einband
- ISBN 3838139887
- Veröffentlichung 06.06.2016
- Titel Perceptual Inference for Autonomous Navigation
- Autor Duong-Van Nguyen
- Untertitel Vegetation Detection and Terrain Classification
- Gewicht 417g
- Herausgeber Südwestdeutscher Verlag für Hochschulschriften AG Co. KG