Periodic Differential Equations in the Plane

CHF 182.65
Auf Lager
SKU
MEU4684ERT1
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions.

Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions.

The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the PoincaréBendixson theorem for discrete dynamical systems.

Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.


Autorentext

Rafael Ortega, University of Granada, Spain.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783110550405
    • Sprache Englisch
    • Auflage 1. Auflage
    • Größe H246mm x B175mm x T17mm
    • Jahr 2019
    • EAN 9783110550405
    • Format Fester Einband
    • ISBN 3110550407
    • Veröffentlichung 06.05.2019
    • Titel Periodic Differential Equations in the Plane
    • Autor Rafael Ortega
    • Untertitel A Topological Perspective
    • Gewicht 527g
    • Herausgeber De Gruyter
    • Anzahl Seiten 200
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470