Periodic Nanostructures

CHF 145.55
Auf Lager
SKU
EV6GJA8VTJQ
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes.

The authors explore foam-like carbon structures, which relate to 'schwarzites', and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices.

The text also provides literature and data on the field of nanostructure periodicity and the authors' own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed.

This book is aimed at scientists working in the field ofnanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future.


An atlas of fascinating nano-structures, which could also be used for illustrating a fiction book The solid theoretical background will ensure a good reliability of the included information Includes supplementary material: sn.pub/extras

Klappentext

In Periodic Nanostructures, the authors demonstrate that structural periodicity in various nanostructures has been proven experimentally. The text covers the coalescence reactions, studied by electronic microscopy, and shows that the nanoworld is continuous, giving rise to zero- (fullerenes), one- (tubules), two-(graphite) and three-(diamond, spongy carbon) dimensional carbon allotropes.

The authors explore foam-like carbon structures, which relate to 'schwarzites', and which represent infinite periodic minimal surfaces of negative curvature. They show that these structures contain polygons (with dimensions larger than hexagons w.r.t. to graphite) that induce this negative curvature. The units of these structures appear as nanotube junctions (produced via an electron beam) that have wide potential molecular electronics applications. Self-assembled supramolecular structures (of various tessellation) and diamond architectures are also proposed. The authors propose that the periodicity of close repeat units of such structures is most evident not only in these formations but also present in all of the carbon allotropes. It is also shown that depending on the lattice tessellation, heteroatom type, and/or doping, metal nanostructures (nanotubes in particular) can display both metallic and semiconductor characteristics. Therefore, their properties can be manipulated by chemical functionalization. The authors therefore suggest that nanostructures have heralded a new generation of nanoscale biological, chemical, and physical devices.

The text also provides literature and data on the field of nanostructure periodicity and the authors' own results on nanostructure building and energy calculations as well as topological characterization by means of counting polynomials of periodic nanostructures. The aromaticity of various coverings of graphitic structures is also discussed.

This book is aimed at scientistsworking in the field of nanoscience and nanotechnology, Ph.D. and MSc. degree students, and others interested in the amazing nanoarchitectures that could inspire the cities of the future.


Inhalt
Periodic Fullerenes by Coalescence Reactions.- Polyhex Tori.- New Classes of Toroidal Structures.- Counting Polynomials of Nanostructures.- Operations on Maps.- Aromaticity of Nanostructures.- Triply Periodic Nanostructures.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789048175062
    • Auflage Softcover reprint of hardcover 1st edition 2007
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T13mm
    • Jahr 2010
    • EAN 9789048175062
    • Format Kartonierter Einband
    • ISBN 9048175062
    • Veröffentlichung 17.11.2010
    • Titel Periodic Nanostructures
    • Autor Csaba L. Nagy , Mircea V. Diudea
    • Untertitel Developments in Fullerene Science 7
    • Gewicht 347g
    • Herausgeber Springer Netherlands
    • Anzahl Seiten 224

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470