Poincaré Inequality

CHF 43.10
Auf Lager
SKU
K3VIP6NFG9E
Stock 1 Verfügbar
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026

Details

High Quality Content by WIKIPEDIA articles!In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition. Such bounds are of great importance in the modern, direct methods of the calculus of variations. A very closely related result is the Friedrichs' inequality. The optimal constant C in the Poincaré inequality is sometimes known as the Poincaré constant for the domain . Determining the Poincaré constant is, in general, a very hard task that depends upon the value of p and the geometry of the domain . Certain special cases are tractable, however. For example, if is a bounded, convex, Lipschitz domain with diameter d, then the Poincaré constant is at most d/2 for p = 1, d/ for p = 2 (Acosta & Durán 2004; Payne & Weinberger 1960), and this is the best possible estimate on the Poincaré constant in terms of the diameter alone. In one dimension, this is Wirtinger's inequality for functions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131118210
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131118210
    • Format Fachbuch
    • Titel Poincaré Inequality
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470