Points and Lines

CHF 81.55
Auf Lager
SKU
O835KROA5OQ
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions.

Contains theorems characterizing the classical projective spaces, polar spaces and geometries of exceptional Lie groups, which are combined with proofs in one source Contains an entirely new treatment of buildings Students can follow all the proofs from elementary first principles without any appeal to external publications Includes supplementary material: sn.pub/extras

Autorentext
Ernest Shult studied finite groups with Michio Suzuki, and held visiting fellowships at the University of Chicago and the Princeton Institute for Advanced Study in the 1960's. He continued to contribute to finite groups until he got interested in incidence geometry. In 1987-8, he received a US Scientist Award from the Alexander von Humboldt Foundation in Freiburg Germany.

Inhalt
I.Basics.- 1 Basics about Graphs.- 2 .Geometries: Basic Concepts.- 3 .Point-line Geometries.-4.Hyperplanes, Embeddings and Teirlinck's Eheory.- II.The Classical Geometries.- 5 .Projective Planes.-6.Projective Spaces.- 7.Polar Spaces.- 8.Near Polygons.- III.Methodology.- 9.Chamber Systems and Buildings.- 10.2-Covers of Chamber Systems.- 11.Locally Truncated Diagram Geometries.-12.Separated Systems of Singular Spaces.- 13 Cooperstein's Theory of Symplecta and Parapolar Spaces.- IV.Applications to Other Lie Incidence Geometries.- 15.Characterizing the Classical Strong Parapolar Spaces: The Cohen-Cooperstein Theory Revisited.- 16.Characterizing Strong Parapolar Spaces by the Relation between Points and Certain Maximal Singular Subspaces.- 17.Point-line Characterizations of the Long Root Geometries.- 18.The Peculiar Pentagon Property.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642156267
    • Sprache Englisch
    • Größe H236mm x B40mm x T156mm
    • Jahr 2010
    • EAN 9783642156267
    • Format Kartonierter Einband
    • ISBN 978-3-642-15626-7
    • Titel Points and Lines
    • Autor Ernest E. Shult
    • Untertitel Characterizing the Classical Geometries
    • Gewicht 1000g
    • Herausgeber Springer-Verlag GmbH
    • Anzahl Seiten 676
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470