Possibilistic Logistic Regression

CHF 68.75
Auf Lager
SKU
4MGTI6N8Q73
Stock 1 Verfügbar
Geliefert zwischen Mi., 14.01.2026 und Do., 15.01.2026

Details

Parameter estimation for logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets ML estimation is a satisfactory approach. Unfortunately, ML may fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. This study extends logistic regression model to fuzzy logistic regression model by suggesting a new approach based on fuzzy concepts to estimate the model parameters. This study produces three proposed mathematical models with different objective functions. The first is formulated as a bi-objective programming model. The second is formulated using a goal programming approach, while the third is a mathematical programming model which minimizes the total spread of the estimated probabilities of the logistic model. The proposed models are evaluated and their results are compared to ML results through a Monte Carlo simulation study. The results are analyzed and summarized to conclude the following: The proposed models outperform ML approach for small size data sets with respect to the similarity measure as goodness of fit index

Autorentext

Dr hesham A. Abdalla is Assistant Professor, Department of Statistics and Insurance, Assiut University, Assiut, Egypt. He have a Ph.D. in Operation research-Cairo University,a Master in Applied Statistics-Cairo University, and a Bachelor of Science in Statistics-Cairo University

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659263637
    • Sprache Englisch
    • Größe H220mm x B150mm x T9mm
    • Jahr 2012
    • EAN 9783659263637
    • Format Kartonierter Einband
    • ISBN 365926363X
    • Veröffentlichung 04.10.2012
    • Titel Possibilistic Logistic Regression
    • Autor Hesham A. Abdalla
    • Untertitel in Fuzzy Environment
    • Gewicht 203g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 124
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470