Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Practical Approaches to Causal Relationship Exploration
Details
This brief presents four practical methods to effectively explore causal relationships, which are often used for explanation, prediction and decision making in medicine, epidemiology, biology, economics, physics and social sciences. The first two methods apply conditional independence tests for causal discovery. The last two methods employ association rule mining for efficient causal hypothesis generation, and a partial association test and retrospective cohort study for validating the hypotheses. All four methods are innovative and effective in identifying potential causal relationships around a given target, and each has its own strength and weakness. For each method, a software tool is provided along with examples demonstrating its use. Practical Approaches to Causal Relationship Exploration is designed for researchers and practitioners working in the areas of artificial intelligence, machine learning, data mining, and biomedical research. The material also benefits advanced students interested in causal relationship discovery.
Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Local causal discovery with a simple PC algorithm.- A local causal discovery algorithm for high dimensional data.- Causal rule discovery with partial association test.- Causal rule discovery with cohort studies.- Experimental comparison and discussions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319144320
- Auflage 2015
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T6mm
- Jahr 2015
- EAN 9783319144320
- Format Kartonierter Einband
- ISBN 3319144324
- Veröffentlichung 25.03.2015
- Titel Practical Approaches to Causal Relationship Exploration
- Autor Jiuyong Li , Thuc Duy Le , Lin Liu
- Untertitel SpringerBriefs in Electrical and Computer Engineering
- Gewicht 154g
- Herausgeber Springer International Publishing
- Anzahl Seiten 92
- Lesemotiv Verstehen